Riding Hexapod Walkers on Dusty Alien Worlds

Hexapod Walker

Speculative fiction is the home of countless machines that fly in space, yet resemble humanoid lifeforms. Scientists are now working on the next generation of robots that will blaze a trail in space by going where humans simply can’t maneuver on their own. Like so many things in the field of space exploration, the descendents of those working on these projects will be the ones to really reap the benefits of this research.

That being said, some scientists and engineers are beginning to consider the possibility of new types of craft that use human pilots while incorporating robotic structures to facilitate planetary exploration. Numerous remotely tele-operated vehicles like the Lunakhod and the Sojourner have already been used with great success to explore extraterrestrial surfaces. The use of human pilots in these past missions would of course been foolish, however, as  technology advances it’s somewhat easier to believe that such endeavors in the future may be realistic. Robotics will undoubtedly become increasingly important as space travel becomes commonplace in the years ahead. Automatic piloting aren’t the only thing that these units will be useful for, however. Semiautonomous navigation devices are old news. Treads won’t be able to explore extremely treacherous terrain on rocky worlds. We need to figure out ways to get humans involved in planetary surface exploration.

One viable option to accomplish this may involve hexapod walkers similar to the one shown above. These units would be far more stable over irregular terrain than treads or wheels. Astronauts landing on other planets wouldn’t be able to work with equipment that’s as straightforward as the buggy used on the Apollo 15, 16 and 17 missions. By using six symmetrical legs, new robotic vehicles could descend vast gorges without tumbling the way conventional vehicles do.

Robotic algorithms can do more than merely pilot units as well. As brain interfaces become safer, astronauts may be able to directly interface with their vehicles. Hexapod legs could actually become extensions of their physical bodies. Some people have proposed constructing piloted robotic vehicles that look like some form of giant humans in order to speed up the learning process. Nevertheless, the human body isn’t exactly a great thing to model a machine after. While the human body might be balanced in its organic form, it wouldn’t really work as a machine. Humans require liquid in the inner ear canal to remain balanced. Hexapod units derive balance from their structure.

Interestingly, not all of a six-legged robot’s legs are necessary to remain upright. If a few of the legs were damaged, it might be able to still move. That makes this design particularly useful for astronauts who would be operating away from technical crews in extremely hazardous environments. Training problems might still be pretty serious, which is why some people have proposed chicken walkers and numerous other sophisticated designs as alternatives.

Conclusion

Industrial robotics have been used in spacecraft rendezvous and docking simulation conditions so these may be the best approach in the future once we figure out how to get humans to planetary bodies. It’s not hard to believe their use will continue to grow as we continue to push the boundaries of space exploration in the future. As we continue moving forward with our space exploration efforts, the involvement of humans should be considered as increases in our technological capabilities are realized.  Brain interfaces and walker units may be integral components in these future planetary exploration efforts.

Reference:

Toralf Boge, & Ou Ma (2011). Using Advanced Industrial Robotics for Spacecraft Rendezvous and Docking simulation Robotics and Automation (ICRA), 1-4 DOI: 10.1109/ICRA.2011.5980583

Wilcox, B. (1992). Robotic vehicles for planetary exploration Applied Intelligence, 2 (2), 181-193 DOI: 10.1007/BF00058762

Why America Desperately Needs More Scientists & Engineers

STEM Careers

Studies have shown that the number of jobs available in the United States is directly related to advances made in science and engineering.  Education experts feel that if America has few leaders developing the technological advances that will create the jobs of the future, then the future will hold few opportunities for our young workers. Read More →

Free App: STEM for Education

Americans made 80% of all scientific discoveries from the 1930s to the 1960s. The United States owes its status to its investment in science, technology, engineering, and mathematics (STEM) education. Today, many countries are following suit by offering STEM education programs, improved infrastructure, numerous research opportunities, STEM scholarships, and active government support.

“The United States has been the dominant science superpower since the 1950s. As a result, in the early 1960s, the United States was spending seven times more money on scientific research than Europe,” said Carolina Cabral Murphy, Co-Founder of MicroEmpowering.

In the last three years, while still in the lead, the United States research output has only grown by 30 percent.

Mrs. Cabral Murphy also highlighted: “Investing in STEM education helps nations and individuals enjoy robust growth prospects.” Students completing STEM education programs enjoy:

  • More job opportunities
  • Better remuneration
  • Better growth prospects
  • Long-term stability in their careers

According to data analyzed by the U.S. Department of Commerce Economics and Statistics Administration, men and women enjoy a 50% STEM premium compared to the hourly wages of those working in non-STEM areas. Women suffer from a 21% wage gap in non-STEM jobs. This gap falls to 14% for women who have completed STEM programs, and the gap narrows drastically for women who have majored in computers, mathematics, or engineering.

Focusing on college education and offering STEM scholarships to college students will not suffice. Those who obtain STEM degrees typically start to show interest in science by age 11.  This means that interest in science and mathematics must be nurtured and encouraged during childhood.

With this challenge in mind MicroEmpowering.org launched an App called Curiosity School – STEM education series. The app is available for FREE @ the iTunes store:
http://itunes.apple.com/us/app/curiosity-school-stem-series/id521507118?mt=8

ABOUT MicroEmpowering:
MicroEmpowering.org provides community organizations, non-profit institutions, and social entrepreneurs with the technology, educational materials, and services they need.

Source: MicroEmpowering.org