Observing the Early Life of Massive Protostars

First, the massive protostar W75N(B)-VLA 2 ejects matter in in all directions. Jet turns into collimated when it expands in toroidal gas and dust environment. Image: Wolfgang Steffen (UNAM)

First, the massive protostar W75N(B)-VLA 2 ejects matter in in all directions. Jet turns into collimated when it expands in toroidal gas and dust environment. Image: Wolfgang Steffen (UNAM)

An international team of astronomers has, for the first time, observed the moment in which a massive protostar begins to develop jets of matter and energy, crucial for star formation. The study, led by Carlos Carrasco-González (UNAM, México) and recently published in the journal Science, has been developed by researchers from the Institute of Cosmos Sciences of the UB (ICCUB-IEEC), the Institute of Space Sciences (CSIC-IEEC) and the Institute of Astrophysics of Andalusia (IAA-CSIC). Read More →

Supermassive Black Holes May be Shaping Galaxies Faster

Image Credit: Artist concept credit: ESA/AOES Medialab)

The understanding of the way in which supermassive black holes shape galaxies is quickly changing, considering that new data is helping astrophysicists to grasp ultra-fast outflows. There is apparently a correlation between central black holes in galaxies and the velocity of stars in the system. An international team at the Goddard Space Flight Center believes that they have identified a particular outflow model that forges a link between black holes and these velocities.

The current understanding is that supermassive black holes make up the center of most decent sized galaxies. Galatic systems that have additional large black holes seem to have bulges where there are faster-moving stars. There seems to be some sort of a feedback loop between star formation and the black hole. However, as of yet, there is no real solid correlation for why this is.

Recent data that was collected by the project, though, explains that ultra-fast outflows might be speeding up these processes. While they’re not as fast as particle jets, ultra-fast outflows are probably making quicker star formation systems. One can hope that the Astro-H X-ray telescope project will help people better understand these concepts when it is presumably launched in 2014. Until that time, the Goddard Center will continue to look into the physical models behind the outflows.

Reference:
Tombesi, F., Cappi, M., Reeves, J., & Braito, V. (2012). Evidence for ultrafast outflows in radio-quiet AGNs – III. Location and energetics Monthly Notices of the Royal Astronomical Society: Letters DOI: 10.1111/j.1745-3933.2012.01221.x

Tombesi, F., Cappi, M., Reeves, J., Palumbo, G., Braito, V., & Dadina, M. (2011). EVIDENCE FOR ULTRA-FAST OUTFLOWS IN RADIO-QUIET ACTIVE GALACTIC NUCLEI. II. DETAILED PHOTOIONIZATION MODELING OF Fe K-SHELL ABSORPTION LINES The Astrophysical Journal, 742 (1) DOI: 10.1088/0004-637X/742/1/44

Tombesi, F., Cappi, M., Reeves, J., Palumbo, G., Yaqoob, T., Braito, V., & Dadina, M. (2010). Evidence for ultra-fast outflows in radio-quiet AGNs Astronomy and Astrophysics, 521 DOI: 10.1051/0004-6361/200913440

ResearchBlogging.org